Low Group Delay Dispersion Optical Coating for Broad Bandwidth High Reflection at 45 Incidence, P Polarization of Femtosecond Pulses with 900 nm Center Wavelength
نویسندگان
چکیده
We describe an optical coating design suitable for broad bandwidth high reflection (BBHR) at 45 ̋ angle of incidence (AOI), P polarization (Ppol) of femtosecond (fs) laser pulses whose wavelengths range from 800 to 1000 nm. Our design process is guided by quarter-wave HR coating properties. The design must afford low group delay dispersion (GDD) for reflected light over the broad, 200 nm bandwidth in order to minimize temporal broadening of the fs pulses due to dispersive alteration of relative phases between their frequency components. The design should also be favorable to high laser-induced damage threshold (LIDT). We base the coating on TiO2/SiO2 layer pairs produced by means of e-beam evaporation with ion-assisted deposition, and use OptiLayer Thin Film Software to explore designs starting with TiO2/SiO2 layers having thicknesses in a reverse chirped arrangement. This approach led to a design with R > 99% from 800 to 1000 nm and GDD < 20 fs2 from 843 to 949 nm (45 ̋ AOI, Ppol). The design’s GDD behaves in a smooth way, suitable for GDD compensation techniques, and its electric field intensities show promise for high LIDTs. Reflectivity and GDD measurements for the initial test coating indicate good performance of the BBHR design. Subsequent coating runs with improved process calibration produced two coatings whose HR bands satisfactorily meet the design goals. For the sake of completeness, we summarize our previously reported transmission spectra and LIDT test results with 800 ps, 8 ps and 675 fs pulses for these two coatings, and present a table of the LIDT results we have for all of our TiO2/SiO2 BBHR coatings, showing the trends with test laser pulse duration from the ns to sub-ps regimes.
منابع مشابه
Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers
Submillimeter-scale dispersion micromanagement (DMM) is discussed and used to generate coherent and stable femtosecond visible pulses (bandwidth up to 50 nm and scalable center wavelength in the range of 385–625 nm) in tapered holey fibers as short as 10 mm. The longitudinal variation of the phase-matching conditions for Cherenkov radiation and four-wave mixing explains the results well. We com...
متن کاملMultilayer Thin Films Dielectric Double Chirped Mirrors Design
The double chirped mirror DCM appeared to meet the need to compensate for the gain crystal dispersion of solid state lasers in a broad wavelength range. Compared to earlier dispersion compensation techniques, they enabled remarkable improvements in the field of generating ultra short pulses. When ultra broad band gain media are used inside laser cavities, cavity dispersion plays an important ro...
متن کاملImprovement of Optical Properties in Hexagonal Index-guiding Photonic Crystal Fiber for Optical Communications
Waveguides with low confinement loss, low chromatic dispersion, and low nonlinear effects are used in optical communication systems. Optical fibers can also be employed in such systems. Besides optical fibers, photonic crystal fibers are also highly suitable transmission media for optical communication systems. In this paper, we introduce two new designs of index-guiding photonic crystal fiber ...
متن کاملSquare Lattice Elliptical- Core Photonic Crystal Fiber Soliton-Effect Compressor at 1550nm
In this paper, we investigate the evolution of supercontinuum and femtosecond optical pulses generation through square lattice elliptical-core photonic crystal fiber (PCF) at 1550 nm by using both full-vector multipole method (M.P.M) and novel concrete algorithms: symmetric split-step Fourier (SSF) and fourth order Runge Kutta (RK4) which is an accurate method to solve the general nonlinear...
متن کاملSub-four-cycle laser pulses directly from a high-repetition-rate optical parametric chirped-pulse amplifier at 3.4 μm.
We generate sub-four-cycle pulses (41.6 fs) with 12 μJ of pulse energy in the mid-infrared spectral range (center wavelength 3.4 μm) from a high-repetition-rate, collinear three-stage optical parametric chirped-pulse amplifier (OPCPA) operating at 50 kHz. Apodized aperiodically poled MgO:LiNbO3 crystals with a negative chirp rate are employed as gain media to achieve ultrabroadband phase-matchi...
متن کامل